Calorimetry - emerging technologies -

Erika Garutti DESY

Jet energy resolution at LHC

Dual readout calorimetry

Alternative approach to the problem of improving hadronic / jet energy resolution:

- measure the shower components in each event

ideally one wants to measure
 also f_n which is proportional to the 0.04

measuring f_{em} in each event

 \rightarrow access the source of fluctuations:

removes the EM fluctuations

binding energy to remove fluctuations in the invisible energy

-Example: The DREAM calorimeter as a test of this approach

The Dual REAdout Method principle

Use Cerenkov light !!!

Quartz fibers (cherenkov emitter) are only sensitive to em shower component !

 ~80% of non-em energy deposited by non-relativistic particles ⇒ e/h=5 (CMS-HF)

 \Rightarrow radial profile of hadronic showers

- Hadronic component mainly spallation protons
 E_k ~ few hundred MeV ⇒ non-relativistic
 ⇒ no Cherenkov light
- Electron and positrons emit Cherenkov light up to a portion of MeV

Use dual-readout system:

- Regular readout (scintillator, LAr, ...) measures visible energy
- Quartz fibers measure em shower component E_{em}
- → Combining both results makes it possible to determine f_{em} and the energy E of the showering hadron
- ➔ Eliminates dominant source of fluctuations

The DREAM prototype

Copper

 $\vdash 2.5 \text{ mm} \dashv$

4 mm

Basic structure: 4x4 mm² Cu rods 2.5 mm radius hole 7 fibers 3 scintillating 4 Čerenkov

DREAM prototype: 5580 rods, 35910 fibers, 2 m long (10 λ_{int}) 16.2 cm effective radius (0.81 λ_{int} , 8.0 ρ_M) 1030 Kg X₀ = 20.10 mm, ρ_M =20.35 mm 19 towers, 270 rods each hexagonal shape, 80 mm apex to apex Tower radius 37.10 mm (1.82 ρ_M) Each tower read-out by 2 PMs (1 for Q and 1 for S fibers) 1 central tower + two rings

The DREAM prototype

DREAM prototype: tested at the CERN H4 beam line Data samples: π from 20 to 300 GeV "Jets" from 50 to 330 GeV "Jets" mimicked by π interaction on 10 cm polyethylene target in front of the detector

Making "jets" at test beams

Calibration with 40 GeV electrons

- Tilt 2° respect to the beam direction to avoid channelling effects
- Modest energy resolution for electrons (scintillator signal):

 $\sigma/E = 20.5\%/\sqrt{E} + 1.5\%$

100 GeV single pions (raw signal)

Signal distribution:

- Asymmetric, broad, smaller signal than for e-
- Typical tails feature of a non-compensating calorimeter

Hadronic response non-linearity

Hadron response is < 1 and ~20% non-linear Similar non-linearity for jets

How to determine f_{em} and E

Q/S<1 \rightarrow ~25% of the scintillator signal from pion showers is caused by nonrelativistic particles, typically protons from spallation or elastic neutron scattering

$$S = E \left[f_{\text{em}} + \frac{1}{(e/h)_{\text{S}}} (1 - f_{\text{em}}) \right]$$
$$Q = E \left[f_{\text{em}} + \frac{1}{(e/h)_{\text{Q}}} (1 - f_{\text{em}}) \right]$$

e.g. If
$$e/h = 1.3$$
 (S), 4.7 (Q)

$$\frac{Q}{S} = \frac{f_{\rm em} + 0.21 (1 - f_{\rm em})}{f_{\rm em} + 0.77 (1 - f_{\rm em})}$$

$$E = \frac{S - \chi Q}{1 - \chi}$$

with
$$\chi = \frac{1 - (h/e)_{S}}{1 - (h/e)_{Q}} \sim 0.3$$

Erika Garutti - Calorimetry III

11/42

Reconstructed hadron energy

Scintillator signal before correction \rightarrow asymmetry due to non-compensation

Energy resolution

Significant improvement in energy resolution especially for jets

Erika Garutti - Calorimetry III

DREAM conclusions and beyond

DREAM technique powerful to improve hadronic resolution:

- Correct hadronic energy reco. in an instrument calibrated with electrons
- Linearity for hadrons and jets
- Gaussian response functions
- Energy resolution scales with sqrt(E)
- σ/E < 5% for high-energy "jets", in a detector with a mass of only 1 ton ! (dominated by fluctuations in shower leakage)

How to further improve:

- Increase Cherenkov light yield
 - DREAM: 8 p.e./GeV \rightarrow fluctuations contribute 35%/ \sqrt{E}
- No reason why DREAM principle is limited to fiber calorimeters
 - Homogeneous detector ?!
 - \Rightarrow Need to separate the light into its Č, S components
 - Sampling structure with alternating tiles of Č, S materials

Dual Readout with homogeneous material

Separation of Scintillation & Cherenkov light can be based on:

- Time structure of the signal
- Spectral difference
- Directionality of Cherenkov component

	Cherenkov	Scintillation		
Time response	Prompt	Exponential decay		
Light Spectrum	$\propto 1/\lambda^2$	Peak		
Directionality	Cone: $\cos \theta_c = 1/\beta n$	Isotropic		

Tests performed at the SPS (CERN) by the DREAM collaboration with 2 kinds of

crystals: **PbW0**₄, **BGO**

Crystal	LightYield % Nal(TI)		Decay Time (ns)		Peak wavel.(nm)	Cutoff wavel.(nm)	Refr. Index	Density (g/cm ³)
BGO 🕻	20) (300)	480	320	2.15	7.13
PWO	0.3) (10)	420	350	2.30	8.28

Disadvantages: BGO much brighter → C/S factor 100 smaller Advantages: Scintillation spectrum peak at 480 nm → use filters Yellow for S, UV for C Scint Decay time 300 ns (very different from prompt Cherenkov signal)

New crystals PbWO4 doped with different concentrations of \rightarrow Praesodymium (peak 630 nm, $\tau \sim \mu s$)

→ Molybdenum (500 nm, τ ~30 ns) → seems to me more promising

Cherenkov light in PbWo4 crystals

- Light yield typically 10 p.e./MeV (dependent on T, readout)
- Lead glass 0.5 1 p.e./MeV from Cherenkov effect (3 5%/√E)
 → Expect substantial Č component in PbWO4 signals
- How to detect/isolate Cherenkov component?
 - Directionality of Cherenkov component
 - Time structure of signals
 - Spectral differences
 - Test doped Pb-glass with red / green scintillator

Dual readout with BGO crystals

400 400 400 Ch 1 Ch 2 Ch 3 200 0 200 400 600 800 1000

Use UV filters upstream of 4 PMTs to suppress the scintillation component

➔ PMTs with UV filter have an enhanced prompt peak due to the Cherenkov light

17/42

Cherenkov light measurements

meta-materials, crystal fibers

Meta-material consisting of **undoped** and **Ce doped** heavy crystal bars of identical material. The undoped crystals behave as **Cherenkov radiators** while the doped crystals behave as **scintillators**

→ a candidate material is the Lutetium Aluminium Garnet (LuAG) crystal

(courtesy of Fibercryst-Lyon, Cyberstar-Grenoble)

(20 fibers of diameter=2 mm, length=30 cm)

- fiber diameter between 0.3-3 mm, length up to 2 m
- pulling rate ranging from 0.1 to 0.5 mm/min
- capillary die can be non-cylindrical (e.g. square, hexagonal etc)

Design of a calorimeter readout unit

• a unit consists of a structured distribution of different types of fibers

- typical dimensions of a unit : $d = 1-1.5 R_{M}; L = 20-25 X_{0}$
- light from different types of fibers is directed to different SiPMTs by using diffractive optics light concentrators (micro-lenses) diffractive optics plate

Fiber bundles exposed to beam

expected difference in signal shape

Time resolution

Time res. also relevant to study neutron component of hadronic showers

Beyond ILC → CLIC

Higher gradient: 100 MV/m vs 35MV/m Higher cms energy: 3 TeV vs 500 GeV

→ Price to pay: 0.5 ns bunch crossing

Time stamp O(10ns) mandatory

TDC integrated in the "ROC" family of chips for future calorimeters

~ 1ns time resolution

Digital HCAL (RPC or µmegas) 64 ch. 16mm²

Erika Garutti - Calorimetrv

Time resolution

Time res. also relevant to study neutron component of hadronic showers

Next generation of calorimeters will be "4D imaging" calorimeters !!

sLHC & CLIC R&D

Calorimetry at sLHC → radiation hard material Exchange scintillator with quartz Test of different quartz + WLS fiber geometries

Advantages of WLS fiber: collect light to photo-detector Improves homogeneity of tile Disadvantages of WLS fiber:

Degradation of fast Cherenkov signal (<1ns)

due to WLS fiber emission

Outlook on future R&D:

- Exploit fast Cherenkov signal + time resolution
- High granularity helps to reduce multiplicity/cell CLIC: move to Tungsten absorber

Behond DREAM

For ultimate hadron calorimetry (15%/ \sqrt{E}) → Measure E_{kin} (neutrons)

- correlated to nuclear binding energy loss (invisible energy)
- can be measured with third type of active material TREAM

➔ hydrogen enriched materials (not yet tested)

Measure Neutron Fraction from the time structure of the signal

The neutron fraction is correlated to nuclear binding energy (invisible energy) → next large source of fluctuations to attack

Erika Garutti - Calorime..., ...

Calorimeters behind HEP

Positron Emission Tomography

How can a calorimeter save your life?

the same system without cover

a commercial PET system

basic unit of a PET: crystal (LSO, BGO) + PMT

→ Functional (metabolich) pictures of living organs in addition to Computer Tomography improves high resolution visualization of anatomic parts

→ PET

Task: reconstruct 2 γ (511 keV) from annihilation of positron from a β -emitting tracer \rightarrow calorimeter

New trends in PET calorimeters

High granularity and small calorimeter cells improve space resolution

Silicon Photomultiplier replace PMT
 compact system
 low HV & cost


```
3x3 mm<sup>2</sup> active area
```


Good E res. → reduce Compton bg.
Good t res. → reduce combinatorial bg.

time resolution for coincidence of two channels ~250ps using SiPM readout and dedicated electronics possible

Technology frontier new products

Extreme granularity

Fiber crystals: ϕ 350um – 3mm

LYSO:Ce

YAG:Ce YAG:Ce WAG:Ce YAG:Ce

Improve space resolution using smallest crystals individually read out

Extreme integration

new generation of Geiger-mode avalanche photo-detector: integrates SPAD on CMOS

~50 um pixel SPADs arranged in arrays with individual pixel readout - O(100ps) time resolution on single photon E. Charbon et al., IEEE (ESSCIRC), Sep. 2009 http://www.everyphotoncounts.com/arrays-linarray.php

Ground based Gamma Ray Astronomy

SiPM offer 60% PDE at 400nm + improvements with lower fill factor

Ground based Gamma Ray Astronomy

Positron Electron Balloon Spectrometer

Proton rejection

e/p separation based on different longitudinal shower shape at a given particle energy (spectrometer) \rightarrow extremely high granularity

Calorimeter for $\beta\beta0\nu$ search: The Bolometer

Cryogenic bolometer

Energy resolution (FWHM): \cong 1 keV (in theory)

Cuoricino experiment @ Gran Sasso

11 modules, 4 detector each, crystal dimension: 5x5x5 cm³ crystal mass: 750 g 44 x 0.79 = 34.76 kg of TeO₂

Encased in a lead shield, nitrogen box, neutron shield, and Faraday cage

2 modules x 9 crystals each crystal dimension: 3x3x6 cm³ crystal mass: 330 g 18 x 0.33 = 5.94 kg of TeO₂

Total detector mass: 40.7 kg TeO₂ \Rightarrow 11.64 kg ¹³⁰Te

Cuoricino limit on $\beta\beta0\nu$

Resolution: FWHM at 2615 keV = 9.2 ± 0.5 keV

Background: In the $\beta\beta0v$ region = 0.18 ± 0.01 counts/(keV kg y)

Results: no peak found

→

τ^{0ν}_{1/2} > 3.0 x 10²⁴ (at 90% C.L.) m_v < 0.2 – 0.98 eV

CUORE will follow with: 988 TeO_2 bolometers cubes 5 cm³ with a mass of 750 g each.

Next step: Cuore

Cryogenic Underground Observatory for Rare Events:

- Array of 988 TeO₂ crystals
- •19 Cuoricino-like towers suspended in a cylindrical structure
- •13 levels of 4 5x5x5 cm³ crystals (750g each)
- •130Te: 33.8% isotope abundance
- •Time of construction: 4 years
- expected by 2010

750 kg TeO₂ => 200 kg
130
Te

With bolometry we are back to the original meaning of calorimetry !

New sensor materials: CdZnTe

New trends in $0\nu\beta\beta$ decay detectors The COBRA experiment

- detector based on CdZnTe semiconductor
- operated at room temperature
- high density of the crystal provides excellent stopping power
- detector array under design:

~6400 crystals of 1 cm³ size (~6.5g) for a total of 400 kg

Conclusions

Calorimetry is a field developed over more than a century, still vital and in continuous evolution

Calorimetry at the technology frontier drives the development of new materials, new photo-detectors, new electronics, ..., new analysis techniques, new ideas

Present key issues for calorimetry:

- Extreme segmentation (Imaging calorimeters)
- Extreme integration (maximum hermeticity)
- Compensation in limited volume (Pflow/ dual-readout)

Thank you all for your attention and participation during these lectures!

Acknowledgments

These slides are largely based on the work of:

The ATLAS collaboration The CALICE collaboration The CMS collaboration The DREAM collaboration

http://atlas.ch/ https://twiki.cern.ch/twiki/bin/view/CALICE/WebHome http://cms.ch/cms/index.html