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After discoveries (LHC)  precision physics  lepton machine 

The Higgs scenario:  

main production mechanisms  

High energy  WW fusion  

 

 
 

Low energy  Higgs-Strahlung 
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Jet physics 

Build a detector with excellent jet energy resolution  
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No Higgs scenario:  

•WW scattering violates unitarity at  ~1.2TeV, or 
new forces show up 

 

 

 

 

 

 

•access EWSB mechanism from WW scattering 

•analyze eeWW  and eeZZ  channels 

•no kinematic fit possible due to the neutrinos 

 Jet physics (continue) 

Worse jet energy resolution (60%/ E) is 
equivalent to a loss of ~40% luminosity 

LEP-like detector 

E60%/ΔΕ jet

ILC design goal 
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Jet energy resolution at LHC 

Stochastic term for hadrons only: ~93% and 42% respectively 



Erika Garutti - calorimetry II 5/44 

Calorimeter for Particle Flow 

jet energy resolution is worse than or at most as good as hadron resolution 

for the precision physics planned for the next machines we need more 

 

Next  how to improve jet energy resolution to match the requirement of the 

new physics expected in the next 30-50 years 

 

 Need to ―get rid of‖ fluctuations 

 

Two approaches: 
 

- minimize the influence of the calorimeter  

   use combination of all detectors 
 

- measure the shower components in each event  

   access the source of  fluctuations 



Erika Garutti - calorimetry II 6/44 

The first idea: Energy flow  

Idea (early 90ies): 

• Combine energy measurement from the calorimeter with the momentum 

measurement from the tracking 

• To not double count the energy: energy deposited in the calorimeter by 

the tracks has to be masked 

 

• First algorithms developed by Aleph: clean e+/e- environment 

• Algorithms also developed by H1 for inclusive measurements, 

  successfully adapted by CDF:  

- extrapolate track to the inner surface of the calorimeter and apply a 

cone or a cylindrical mask to the calorimeter cells behind the track 

- maximize between the energy in the mask and the track 

momentum 
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             First application of Energy Flow Algorithm 
              ALEPH detector searching for Higgs 1990 

Use tracker information to improve jet energy resolution 

Particle Flow Algorithms 

 First observation of quark Jets 
 

             UA1, UA2 @ SppS, CERN 

             JADE @ PETRA collider, DESY  

~1980 
       jet 

e+ e- 

q 

q 

jet 

Traditional Jet measurement: 

use the calorimeter alone  

   example of CDF life event 

Discovery of new physics requires higher resolution 

Energy flow history 
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Does the method work ? 

Test on existing detectors 

 ALEPH, CDF, ZEUS, … 

 

Significantly improved resolution 

 

 

 

 
 

Goal of the Linear Collider 

 

 

YES ! But that is not enough … 

Design a detector optimized for  

Particle Flow application 

back to a 

―GARGAMELLE‖-type 

detector 
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Particle Flow paradigm 

 reconstruct every particle in the event 

 up to ~100 GeV Tracker is superior to calorimeter  

     use tracker to reconstruct e

 

,

 

,h

 

   (<65%> of Ejet ) 

 use ECAL for  reconstruction (<25%>) 

 (ECAL+) HCAL for h0 reconstruction (<10%>) 

HCAL E resolution still dominates Ejet resolution 

But much improved resolution (only 10% of Ejet in HCAL) 

PFLOW calorimetry   =     Highly granular detectors  

  + Sophisticated reconstruction software  
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Particle flow calorimetry 
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Particle Flow @ LHC 

CMS  
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PFlow improvements at CMS 
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Summary of PFlow concept 

Particle flow is a concept to improve the jet energy resolution of a HEP detector 

It is based on: 

 proper detector design (high granular calorimeter!!!) 

 + sophisticated reconstruction software  

 

PFlow techniques have been shown to improve jet E resolution in existing 

detectors, but the full benefit can only be seen on the future generation of       

PFlow designed detectors 

 

 

  

 push to ultimately small single calorimeter cells: 

 ~ 5x5 mm2 – 50x50 um2 for ECAL  

 ~ 1cm2 for HCAL 

 

 Develop new techniques 



Erika Garutti - calorimetry II 14/44 

Analog .vs. Digital 

iNE

Non-linear behavior 

for dense showers 

photon analysis 

 

 

 

ECAL: Analog readout required  

S.Magill (ANL) 
  

hadron analysis 

 

 

 

HCAL: either Analog or Digital readout 

Slope = 23 hits/GeV 

ih NE

Calorimeter cell size 1x1cm2 
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• no spacer between layers in the wedge 

• minimize dead material between wedges 

• minimize gap between barrel and end-cap 

 integrated readout electronics 

A calorimeter for the ILC detector  ILD one of the two proposed concepts 

Mechanics:  

challenging design with no spacers 

 validated 

plates flatness below 1mm    

 solved at low cost with roller 

leveling technique 

Analog HCAL with high granularity 
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Analog HCAL with high granularity 

3mm 

Tile size optimized with Particle Flow 

 3x3 cm2  
 

 

Tile thickness 3mm for ILD design 

Engineering prototype  

Light yield ~ 10 – 11 p.e. / MIP 

Alignment pin 

Silver paint mirror CPTA 

Sandwich structure of steel/scint. 

Compact design with minimum dead 

material + integrated electronics 

• ―no‖ gap in z in the barrel 

• 10cm gap between barrel and endcap 
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- CPTA 

- MEPHI/Pulsar 

inter pixel  

crosstalk < 10% 

noise above 

0.5 p.e.  

~1.5MHz 

CPTA SiPM 
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Current, μA 

typical current  

~0.2-0.3uA 
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Architecture design (I) 

PCB board back side: 

• reflector foil layer 

• scintillator tiles fixed  

  by alignment pins 

• Front End electronics integrated in active layer 

• made of interconnected cassettes (36x36 cm) 

• power and calibration modules at barrel edge 

• 2.2m long communication lines in the layer 

 

 

3 cm SiPM 

Alignment pins WLS fiber 
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Architecture design (II) 

PCB board with 4 SPIROC chips 

connected to 144 scintillator tiles 

with SiPM readout 

• Front End electronics integrated in active layer 

• made of interconnected cassettes (36x36 cm) 

• power and calibration modules at barrel edge 

• 2.2m long communication lines in the layer 

 

 

3
6
 c

m
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The SPIROC chip 

designed by Omega group LAL (Orsay) 

Specific chip for SiPM: 
• input DAC for bias adjustment 
 

Designed to work at ILC: 
• power pulsing mode 

• 25 W /ch  

• internal ADC / TDC  

• auto-trigger mode 

• time stamp (~1ns) 
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Layer design 

Cassette cross-section: 

• each calo layer 18 mm including Fe 

• 3 mm scintillator tiles  

• one SMD-LED mounted on each tile 

• flex-lead connection between boards  

Connection to the detector interface electronics at the end of the HCAL barrel 

 

 Ultra-thin  

Low power consumption 

High concentration/data 

reduction  
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LED monitoring system(s) 

Light distributed by notched fibres Light directly on tile by SMD-LED  

- distributed LED  

System task:    SiPM gain calibration via single photoelectron peak spectra (~1-2 p.e.) 

            long term stability via response @ medium light (~20-100 p.e.) 

            measure SiPM saturation level (~2000 p.e.) 

Two technological solutions: 



Erika Garutti - calorimetry II 23/44 

LED monitoring system(s) 

Light distributed by notched fibres Light directly on tile by SMD-LED  

- distributed LED  

System task:    SiPM gain calibration via single photoelectron peak spectra (~1-2 p.e.) 

            long term stability via response @ medium light (~20-100 p.e.) 

            measure SiPM saturation level (~2000 p.e.) 

Two technological solutions: 

Both systems commissioned  SiPM gain calibration achievable 

Next step  reduce spread in light intensity between channels 
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or pads 

 The Digital HCAL: super-high granularity 

MICROMEGAS in a bulk 

Pillars: 400u Ø, 100u height 

Ampl. gap 25-150µm  narrow avalanches 

excellent spatial and time resolution 

Basic technique for the active media: 

- Ionization-gas chambers with charge amplification 

(RPC, GEM, MicroMegas) 

- digital readout on pads 1x1cm2 

- integrated electronics inside active layer 

- high level of data concentration (~0.5 M channels / m3)  

140 m 

75 m 

Gas Electron Multiplier foil 
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Resistive Plate Chamber readout 

Resistive paint 

Resistive paint 

Mylar  

1.2mm gas gap 

Mylar  

Aluminum foil 

0.85 mm glass 

1.15 mm glass 

Signal pads 

HV 

ASIC 

Front-End PCB 

Pad Board 

Conductive Epoxy Glue 

Communication Link 

8.6 mm 

Chamber Construction: 

Fishing line spacers 

(Not to Scale) 

Avalanche mode: 

Typical induced charge of 

0.1—10 pC/mip with rising time ~10 ns 
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Digital HCAL with RPC readout 

Plane Construction 

• A plane consists of 3 

independent chambers  
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Square Meter Plane 

(3) 32 cm X 96 cm chambers 

HV 
Gas 

Inlet 

Gas 

Outlet 



Erika Garutti - calorimetry II 27/44 

Digital HCAL with RPC readout 

Data  

Concentrator 

Front End Board 

  with DCAL Chips 

& Integrated DCON 

Serial Communication Link 

- 1 per Front-End Bd 
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Square Meter Plane 
(2) 32 cm X 48 cm Front End Boards per Chamber 

Power 

Front End Board 

• (24) 64-Ch Chips / Bd 

• 1536 Channels / Bd   
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Digital HCAL with RPC readout 

Pad Boards  

• Glued to Front End Board using Conductive Epoxy 

• Gluing done after Front End Board assembly and check out 
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Digital HCAL with RPC readout 

Square meter plane mounted on cassette 

using prototype Front End Boards 
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Data
Power

Digital HCAL with RPC readout 

Data  

Concentrator 

Front End Board 

  with DCAL Chips 

& Integrated DCON 

Serial Communication Link 

- 1 per Front-End Bd 
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Square Meter Plane 

VME Interface 
Data Collectors – Need 10 

Timing Module 

-Double Width 

-- 16 Outputs 

Ext.  

Trig In 

Optional 

GPS IN 

6U VME Crate 

To PC 

VME Interface 
Data Collectors – Need 10 

6U VME Crate 

To PC 

MASTER 

TTM 

SLAVE 

TTM 
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Digital HCAL first data: 16/10/10 

first ever realized 1m3 prototype of Digital HCAL with Resistive Plate Chamber  

readout operational at Fermilab MTBF since this weekend!! 

CALICE collaboration 

The first multi 

tracks from muons 

recorded 
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Biggest challenge: integrate electronics 
in 6mm PCB  special chip design   

ASIC - HARDROC ( Ω LAL)  

• 3 thresholds, masks, optimized 
power pulsing 

• controlled in a fully automatic way 
using a robotic system used for CMS 
trackers 

Praha, 29/7/09 32 

Semidigital RPCs 

Different readout approach: semi-digital 

• 1 cm2 readout pads  

• 3 mm of Ar/iC4H10 : 95/5 

• Analog readout prototypes for 

characterization (GASSIPLEX 

chips), 6x16, 12x32 cm2 

• Digital readout prototypes 

with embedded electronics 

(HARDROC/DIRAC chips), 

8x32, 32x48 cm2 

2 x 48 ASICs = 3072 channels = 1/3 m2 
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Efficiency and hit multiplicity 

Using muon signal as MIP + tracking 

  

Plateau: 7.2 — 8 kV → Efficiency between 80 and 98% 
 

 Lower multiplicity is preferred 
   

 Best ratio multiplicity/efficiency: around 7.4 kV 
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HV power 

Analog signal 

Gas outlet 

LV power 

Data cable 

Fe55 Source Signal 

-2100 V 

∆V ~400 V 

∆V ~400 V 

0 V 

1 mm 

1 mm 

3 mm 

Different gas amplification method:  
GEMs or Micromegas 

Advantages: 

•Low working voltage (~400V) 

•Proportional mode operation 

•Standard gas mixtures (Ar+CO2, 

80%+20%) 

•Robust (up to 1012 part/mm2 without 

performance degradation) 

•High rate capability 

•modified chip design to accommodate 

for smaller signals (> ~20 fC) 
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Analog .vs. Digital 

iNE

Non-linear behavior 

for dense showers 

photon analysis 

 

 

 

ECAL: Analog readout required  

S.Magill (ANL) 
  

hadron analysis 

 

 

 

HCAL: either Analog or Digital readout 

Slope = 23 hits/GeV 

ih NE

Calorimeter cell size 1x1cm2 
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Highest granularity ECAL 

CALICE:  

Si-W with analog readout 

 

30 layers W-Si 

1 cm2 Si-PADs (next version with 

0.5x0.5 cm2 Si-PADs) 

~10000 channels  

 

 Imaging calorimeter!! 

 

e-    45 GeV     ECAL @ 10 deg 

Courtesy of G. Geyken 
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Si-W ECAL 



Erika Garutti - calorimetry II 38/44 

CALICE  

Si-W ECAL 

data  

Imaging calorimeter 



Erika Garutti - calorimetry II 39/44 

High granularity scintillator ECAL 
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High granularity scintillator ECAL 
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Digital ECAL 

Next R&D steps: 

• Swap ~0.5x0.5 cm2 analog readout Si pads with 

smaller pixels readout digitally  

•   ―Small‖ = at most one particle/pixel 

• 1-bit ADC/pixel, i.e. Digital ! 

 

How small should a pixel be?  
• EM shower core density at 500GeV is ~100/mm2   

• Pixels must be<100×100μm2  

• Baseline: 50×50μm2  

• Gives ~1012 pixels for ECAL  

 a ―Tera-pixel calorimeter‖  

• Mandatory to integrate electronics on sensor  

MAPS (Monolithic Active Pixel Sensors) 

    - developed for vertex detectors 

1
2

m
 

Monolithic Active Pixel 

Sensors 
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Digital ECAL technology 

   8.2 million transistors 

􀀟 28224 pixels; 50x50 

μm2 

 

The technology: MAPS (Monolithic Active Pixel Sensors) 

   - A standard CMOS product developed for vertex detectors 

 

• Potentially significant price advantage over high resistivity Si diodes 

• Tests of sensor prototypes at CERN in ‗09: 8.4 x 8.4 mm2 sensitive area 
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Pixel Occupancy 

MAPS concept requires binary readout...  

 need at most 1 hit per pixel or else lose information 

Si-W ECAL, 100GeV electrons MAPS ECAL, 100GeV electrons 

Select optimal pixel pitch from simulation studies 

barrel barrel endcap endcap 
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Analog vs digital ECAL 

great improvement in imaging capability 
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Summary on Particle Flow  

PFLOW is a proposed technique to improve jet energy resolution at collider 

experiments 

It is based on extremely high granularity calorimeters to allow single shower 

separation in a dense jet environment 

It requires development of new technologies  

 

  

 

 

- Analog and digital readout solution discussed 

- all based on sampling calorimeters 

  not optimized for ultimate energy resolution performance !  

 push to ultimately small single calorimeter cells: 

 ~ 5x5 mm2 – 50x50 um2 for ECAL  

 ~ 1cm2 for HCAL 

Tomorrow lecture:  the ultimate hadronic energy resolution  

    the fight against fluctuations 

    & calorimeters without colliders 


