- particle flow -

Erika Garutti DESY

Jet physics

Erika Garutti - calorimetry II

2/44

Jet physics (continue)

Jet energy resolution at LHC

Calorimeter for Particle Flow

jet energy resolution is worse than or at most as good as hadron resolution → for the precision physics planned for the next machines we need more

Next \rightarrow how to improve jet energy resolution to match the requirement of the new physics expected in the next 30-50 years

→ Need to "get rid of" fluctuations

Two approaches:

- minimize the influence of the calorimeter
 Juse combination of all detectors
- measure the shower components in each event
 access the source of fluctuations

The first idea: Energy flow

Idea (early 90ies):

- Combine energy measurement from the calorimeter with the momentum measurement from the tracking
- To not double count the energy: energy deposited in the calorimeter by the tracks has to be masked
- First algorithms developed by Aleph: clean e+/e- environment
- Algorithms also developed by H1 for inclusive measurements, successfully adapted by CDF:
 - extrapolate track to the inner surface of the calorimeter and apply a cone or a cylindrical mask to the calorimeter cells behind the track
 - maximize between the energy in the mask and the track momentum

Energy flow history

m_h (GeV/c²)

First application of Energy Flow Algorithm ALEPH detector searching for Higgs

Use tracker information to improve jet energy resolution

Erika Garutti - calorimetry II

7/44

Does the method work?

Jet Energy Resolution (%) 01 01 11 11 01 81

8

20

25

Test on existing detectors ALEPH, CDF, ZEUS, ...

 \rightarrow Significantly improved resolution

YES ! But that is not enough ...

Goal of the Linear Collider

Design a detector optimized for Particle Flow application

Photon + Jet Pr Balancing in CDF Data

Calorimetry only

 $\sigma/P_{T} = 83 \%/\sqrt{P_{T}}$

• Typical CDF Jet Resolution using

▲ New CDF Jet Algorithm Using Tracking Calorimetry and Shower Max Detectors

Particle Flow paradigm

 → reconstruct every particle in the event up to ~100 GeV Tracker is superior to calorimeter → use tracker to reconstruct e ,µ ,h (<65%> of E_{jet}) use ECAL for γ reconstruction (<25%>) (ECAL+) HCAL for h⁰ reconstruction (<10%>)
 HCAL E resolution still dominates E_{jet} resolution
 But much improved resolution (only 10% of E_{jet} in HCAL)

PFLOW calorimetry = Highly granular detectors + Sophisticated reconstruction software

Particle flow calorimetry

Hardware: ★Need to be able to resolve energy deposits from different particles → Highly granular detectors (as studied in CALICE)

Software:

*Need to be able to identify energy deposits from each individual particle !
Sophisticated reconstruction software

***** Particle Flow Calorimetry = HARDWARE + SOFTWARE

Particle Flow @ LHC

PFlow improvements at CMS

Summary of PFlow concept

Particle flow is a concept to improve the jet energy resolution of a HEP detector It is based on:

proper detector design (high granular calorimeter!!!)

+ sophisticated reconstruction software

PFlow techniques have been shown to improve jet E resolution in existing detectors, but the full benefit can only be seen on the future generation of PFlow designed detectors

- → push to ultimately small single calorimeter cells:
 - ~ $5x5 \text{ mm}^2 50x50 \text{ um}^2$ for ECAL
 - $\sim 1 \text{cm}^2$ for HCAL

➔ Develop new techniques

Analog .vs. Digital

photon analysis

 $E_{\gamma} \neq \sum N_i$

ECAL: Analog readout required

hadron analysis

HCAL: either Analog or Digital readout

Calorimeter cell size 1x1cm²

Analog HCAL with high granularity

A calorimeter for the ILC detector → ILD one of the two proposed concepts

- no spacer between layers in the wedge
- minimize dead material between wedges
- minimize gap between barrel and end-cap
- ➔ integrated readout electronics

Mechanics:

challenging design with no spacers
→ validated
plates flatness below 1mm
→ solved at low cost with roller
leveling technique

Analog HCAL with high granularity

Tile size optimized with Particle Flow \rightarrow 3x3 cm²

Tile thickness 3mm for ILD design Light yield ~ 10 - 11 p.e. / MIP Sandwich structure of steel/scint. Compact design with minimum dead material + integrated electronics

- "no" gap in z in the barrel
- 10cm gap between barrel and endcap

SiPM parameters

Erika Garutti - calorimetry II

17/44

Architecture design (I)

Architecture design (II)

- Front End electronics integrated in active layer
- made of interconnected cassettes (36x36 cm)
- power and calibration modules at barrel edge
- 2.2m long communication lines in the layer

PCB board with 4 SPIROC chips connected to 144 scintillator tiles

300

cm

The SPIROC chip

SPIROC layout (CALICE chip for Analog HCAL readout)

Specific chip for SiPM: and a second • input DAC for bias adjustment Designed to work at ILC: 36 power pulsing mode 36 36*16 36*2 SRAM Preamn 8bit • 25 µW /ch Analog Wilkinson Readout Shaper 5V DAC memory ADC internal ADC / TDC discri auto-trigger mode time stamp (~1ns) Output: multiplexed / digitized signals Bandgap Dual DAC a star la la se designed by Omega group LAL (Orsay)

Layer design

Cassette cross-section:

- each calo layer 18 mm including Fe
- 3 mm scintillator tiles
- one SMD-LED mounted on each tile
- flex-lead connection between boards

Connection to the detector interface electronics at the end of the HCAL barrel

Ultra-thin Low power consumption High concentration/data reduction

LED monitoring system(s)

System task: SiPM gain calibration via single photoelectron peak spectra (~1-2 p.e.) long term stability via response @ medium light (~20-100 p.e.) measure SiPM saturation level (~2000 p.e.)

Two technological solutions:

Light distributed by notched fibres

Light directly on tile by SMD-LED - distributed LED

LED monitoring system(s)

System task: SiPM gain calibration via single photoelectron peak spectra (~1-2 p.e.) long term stability via response @ medium light (~20-100 p.e.) measure SiPM saturation level (~2000 p.e.)

Two technological solutions:

Light distributed by notched fibres

Light directly on tile by SMD-LED - distributed LED

Both systems commissioned → SiPM gain calibration achievable Next step → reduce spread in light intensity between channels

The Digital HCAL: super-high granularity

Basic technique for the active media:

- Ionization-gas chambers with charge amplification (RPC, GEM, MicroMegas)
- digital readout on pads 1x1cm²
- integrated electronics inside active layer
- high level of data concentration (~0.5 M channels / m³)

Gas Electron Multiplier foil

2 mm

Pillars: 400u Ø, 100u height Ampl. gap 25-150 μ m \rightarrow narrow avalanches excellent spatial and time resolution

Erika Garutti - calorimetry II

24/44

Resistive Plate Chamber readout

Chamber Construction:

Avalanche mode:

Typical induced charge of 0.1—10 pC/mip with rising time ~10 ns

Plane Construction

• A plane consists of 3 independent chambers

Square Meter Plane (2) 32 cm X 48 cm Front End Boards per Chamber

Front End Board

- (24) 64-Ch Chips / Bd
- 1536 Channels / Bd •

Pad Boards

- Glued to Front End Board using Conductive Epoxy
- Gluing done after Front End Board assembly and check out

Square meter plane mounted on cassette using prototype Front End Boards

Digital HCAL first data: 16/10/10

first ever realized 1m³ prototype of Digital HCAL with Resistive Plate Chamber readout operational at Fermilab MTBF since this weekend!!

The first multi tracks from muons recorded

Different readout approach: semi-digital

Semidigital RPCs

Biggest challenge: integrate electronics in 6mm PCB → special chip design ASIC - HARDROC (Ω LAL)

- 3 thresholds, masks, optimized power pulsing
- controlled in a fully automatic way using a robotic system used for CMS trackers

- 1 cm² readout pads
- 3 mm of Ar/iC_4H_{10} : 95/5
- Analog readout prototypes for characterization (GASSIPLEX chips), 6x16, 12x32 cm²
- Digital readout prototypes with embedded electronics (HARDROC/DIRAC chips), 8x32, 32x48 cm²

$2 \times 48 \text{ ASICs} = 3072 \text{ channels} = 1/3 \text{ m}^2$

Efficiency and hit multiplicity

Using muon signal as MIP + tracking

Plateau: 7.2 — 8 kV \rightarrow Efficiency between 80 and 98%

- → Lower multiplicity is preferred
- → Best ratio multiplicity/efficiency: around 7.4 kV

Different gas amplification method: GEMs or Micromegas

Advantages:

- Low working voltage (~400V)
- •Proportional mode operation
- •Standard gas mixtures (Ar+CO₂, 80%+20%)
- •Robust (up to 10¹² part/mm² without performance degradation)
- •High rate capability
- •modified chip design to accommodate for smaller signals (> ~20 fC)

Erika Garutti - calorimetry II

34/44

Analog .vs. Digital

photon analysis

 $E_{\gamma} \neq \sum N_i$

ECAL: Analog readout required

Gamma nhits vs Energy

hadron analysis

HCAL: either Analog or Digital readout

Calorimeter cell size 1x1cm²

Highest granularity ECAL

CALICE: Si-W with analog readout

30 layers W-Si 1 cm² Si-PADs (next version with 0.5x0.5 cm² Si-PADs) ~10000 channels

→ Imaging calorimeter!!

Si-W ECAL

30 layers of Tungsten:

- 10 x 1.4 mm (0.4 X₀)
- 10 x 2.8 mm (0.8 X₀)
- 10 x 4.2 mm (1.2 X₀)
- 24 X₀ total, 1 λ₁

Experimental Setup

y direction (pad number)

10

Initial Pion

10

5

Zoom into Ecal

25

20

15

10

Particle Distance \sim 5 cm \rightarrow No Confusion !!!

(Start of) Hadronic Showers in the SiW Ecal Imaging calorimeter

Simple but Nice

Nucleon Ejection in SiW Ecal 38/44

·····

Inelastic Reaction in SiW Ecal

15

Interaction

Outgoing Fragments

25

30

20

z direction (layer number)

High granularity scintillator ECAL

High granularity scintillator ECAL

- The technical prototype to establish the ScECAL feasibility.
- Sandwich structure with scintillator-strips (3 mm) and tungsten layers (3.5 mm).
- Extruded scintillator and the MPPC are fully adopted.
- Strips are orthogonal in alternate layers.
- 72 strips x 30 layers = 2160 channels.

Digital ECAL

Next R&D steps:

- Swap ~0.5x0.5 cm² analog readout Si pads with smaller pixels readout digitally
- "Small" = at most one particle/pixel
- 1-bit ADC/pixel, i.e. Digital !

How small should a pixel be?

- EM shower core density at 500GeV is ~100/mm²
- Pixels must be<100×100µm²
- Baseline: 50×50µm²
- Gives ~10¹² pixels for ECAL

a "Tera-pixel calorimeter"

- Mandatory to integrate electronics on sensor
- →MAPS (Monolithic Active Pixel Sensors)
 - developed for vertex detectors

Monolithic Active Pixel Sensors

Digital ECAL technology

The technology: MAPS (Monolithic Active Pixel Sensors) - A standard CMOS product developed for vertex detectors

- Potentially significant price advantage over high resistivity Si diodes
- Tests of sensor prototypes at CERN in '09: 8.4 x 8.4 mm² sensitive area

8.2 million transistors □ 28224 pixels; 50x50 Erika Garutti - calorin

Pixel Occupancy

MAPS concept requires binary readout...→ need at most 1 hit per pixel or else lose information

Si-W ECAL, 100GeV electrons

MAPS ECAL, 100GeV electrons

Select optimal pixel pitch from simulation studies

Analog vs digital ECAL

great improvement in imaging capability

Summary on Particle Flow

PFLOW is a proposed technique to improve jet energy resolution at collider experiments

- → It is based on extremely high granularity calorimeters to allow single shower separation in a dense jet environment
- → It requires development of new technologies
 - → push to ultimately small single calorimeter cells:
 - $\sim 5 x 5 \ mm^2 50 x 50 \ um^2$ for ECAL
 - ~ 1cm^2 for HCAL
- Analog and digital readout solution discussed
- all based on sampling calorimeters
 - ➔ not optimized for ultimate energy resolution performance !

Tomorrow lecture:

the ultimate hadronic energy resolution the fight against fluctuations & calorimeters without colliders