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Answer to your question:
| | . X E‘ k

Can one detect the extremely high energetic neutrinos in from
cosmic rays by their sound?

=» The Nobel answer: “no, too low energy”

=» The round of guys lecturing at this Grad-days: “maybe possible... ~mJ
energy can produce sound in laser experiments”

= Google: “it is being tried in DESY Zeuthen for IceCube™ !l

Akustische Neutrinosuche: Horchposten fur hochenergetische Neutrinos
http//www.weltderphysik.de/de/5128.php

a typical neutrino induced particle shower with an energy of 10418 eV has in a distance of 400 m to the
shower a pressure amplitude of only 5 mPa. in the ice of IceCube you have already a pressure of 25 MPa
in 2500 m. therefore your background pressure is 10*9 larger than the signal.

a proton is of 10*-15 m & molecules at 10*-9 m... so six order of magnitudes... with the energy of

10M8 eV, there is enough energy to make this step & still to "move" the molecules.
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If you work for:

LHC

ILC

ILC and beyond

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

some relevant calorimeter topics are
Calorimeter as trigger, missing E; and jets
Calorimeter for Particle Flow

Dual readout calorimeter
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Calorimeters as trigger

..... %

Issue:
Define an accept/reject signal for relevant physics in short time (~usec)
with much info in the detector (~MB/event, ~GHz rate)

=>» minimum processing time for huge data volume

Answer:
- No tracking algorithm possible on such time scale
=>» Use the calorimeter information compressed in suitable form

Different way to use a calorimeter:

-emphasis is on fast decision at the cost of precision

-not best E reconstruction, but precise enough for threshold selection
-not ultimate jet reconstruction, but topological information
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A short parenthesis: LHC Collisions

Aardinriatt 1]
P R "
e ——————————————————————————————————————————————————————————— e AR

Proton-Proton 2835 bunch/beam
Protons/bunch 10"
Beam energy 7 TeV (7x102 eV)

Luminosity 10** ecm? s™
Llade, ALy .
Bunch R S Crossing rate 40 MHz

Proton o e with every bunch crossing

23 Minimum Bias events

Parton with ~1725 particles produced
(quark, gluon) «:D

Particle . i . Selection of 1 in
+ 10,000,000,000,000

jet
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Beam Xings: LEP. TeV, LHC

LHC has ~3600 bunches
* And same length as LEP (27 km)
» Distance between bunches: 27km/3600=7.5m
» Distance between bunches in time: 7.5m/c=25ns

LEP: e*e Crossing rate 30 kHz

I T
22us
- Tevatron Run |
- = I 1]
3.5us
- evvatron Run ||
S %ne

LHC: pp Crossing rate 40 MHz

25ns
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p-p Collisions at LHC

6 LHC Vs=14TeV L=10cm’s’ Event Rate ev/year

barn 10 Operating conditions:
s Event rate gp{6Hz 10 * “good” event (e.g/Higgs in 4 mi
inelastic o 1 “+ =20 Im b
mbl v {10 ™
MHz <10 "3
10 12
10 1
kHz
Hz
| mHz
. v Event size: ~1 MByte
ns 3, Processing Power: ~X TFlop
50 100 200 500 1000 2000  10°
jet Er or particle mass (GeV) — I
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LHC Physics & Event Rates

At design L = 1034cm2s barn . HC YesuTev | Let0fem’sT

¢ 23 pp eventS/25 ns Xlng #—— @ inelastic Lv1 ir||:|ut'--—-—'—3"'(:“-'z 10 "
*~ 1 GHz input rate T
*“Good” events contain mb_ | 10 "
~ 20 bkg. events MHz 10
° 1 kHZ VV eventS max HLT input————> 10 13
1 O H t t b max LV1 output ——— 1

¢ Z 10p events H -10
« < 10% detectable Higgs ‘ol kHz 10
decays/year W max HLT output—————>  + 10°

Can store ~ 300 Hz events nb
Select in stages
* Level-1 Triggers
1 GHz to 100 kHz ”
* High Level Triggers
*100 kHz to 300 Hz

* Ty scalar L CI Z ~1"TN

50 100 200 500 1000 2000 5000
particle mass (GeV)
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Triggering

Task: inspect detector information and provide a first
decision on whether to keep the event or throw it out

The trigger is a function of :
IS,
REJECTED
ACCEPTED

Event data & Apparatus
Physics channels & Parameters

* Detector data not (all) promptly available

« Selection function highly complex

—=T(...) is evaluated by successive approximations, the
TRIGGER LEVELS

(possibly with zero dead time)
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Processing LHC Data
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Rate (Hz) LEVEL-1 Trigger 40 MHz
QED i Hardwired processors (ASIC, FPGA)
———1 111 MASSIVE PARALLEL
Pipelined Logic Systems
108
10°_
4——=001-1sec —p

10°- A PP A
o S LN L N
Top 10°- hé\‘lé\‘é\‘fé\‘é\
A e A
Higgs AR A A A

10%
HIGH LEVEL TRIGGERS 100 kHz
Standard processor FARMs

104 25ns = s ms sec
= L]

0 100 100 q0r 100 | 2
Available processing time
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LHC Trlgger & DAQ Challenges

Challenges

COLLISION RATE" DETECTOR CHANNELS 16 Million channels

3 Gigacell buffers | 1 GHz of |npu’[
% oL IR =] Interactions

Charge Time  Pattern Energy  Tracks

100 - 50 kHz 7 1 MBEVENTDATA | Beam-crossing
1 Terabit/s 200 GB buffers every 25 ns
READOUT [# .
50,000 data |, ~ 400 Readout with ~ 23
channels memaories . .
INteractions

EVENT BUILDER.
A large switching network (400+400 p r O d u C eS O V e r

ports) with total throughput ~ 400Gbit/s

forms the interconnection between the
sources (deep buffers) and the 1 M B Of d at a

destinations (buffers before farm

500 Gigabit/s

CPUs).
~ 400 CPU farms .
valmsln — eventrier | Archival
300 Hz Loe La | brocessors organized ino many farms
FILTERED I I | I Eonv_enient forgon-lin:-:‘j ar:d off—li?;; St O r ag e at

applications.
EVENT i ) 5 TeralPS
EVE about 300 Hz of
Gigabit/s Computing Services Petabyte ARCHIVE

SERVICE LAN 1 MB events
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pulse shape

Challenges: Pile-up

Lk K

= “In-time” pile-up: particles from the same crossing but
from a different pp interaction

Long detector ¥
response/pulse shapes: b
¢ “Out-of-time” pile-up: left-over N
signals from interactions in ot
previous crossings N
+ Need “bunch-crossing T ek
identification” _ _
& super— ]z N In+Out-of-time
ZZ \ : \ pulses
In-time : N
pulse :> X\XY
Impose / \EM
............................... A T L L

£ 4 32401 2 3 45 6 7 8 910111213 14 15 16 17 18 19 20
t (25ns units)
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Challenges: Time of Flight A
c=30cm/ns -in25ns,s= 7.5m | Jj: migﬂy

o
Muon Detectors Electromagnetic Calorimeters

Forward Calorimeters

\!
\
Solenoid 7
/ End Cap Toroid

Y
\
lﬁ.\

—_— Inner Detector 1 ) eldi
HakE Torsi Hadronic Calorimeters Shielding

Erika Garutti - The art of calorimetry 13



L
@
10°s
o
103 s
}....»
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LHC Trigger Levels

Collision rate 10° Hz
Channel data sampling at 40 MHz

Level-1 selected events 10° Hz

Particle identification (High p; e, p, jets, missing E.)

* Local pattern recognition

* Energy evaluation on prompt macro-granular information

Level-2 selected events 10° Hz

Clean particle signature (Z, W, ..)

* Finer granularity precise measurement

» Kinematics. effective mass cuts and event topology
* Track reconstruction and detector matching

Level-3 events to tape 100- 300 Hz

Physics process identification
* Event reconstruction and analysis

Erika Garutti - The art of calorimetry 14



ATLAS & CMS

rigger & Readout Structure

=~ 30 Collisions/25ns

{10 * eventisec )

107channels

(10 % bit/sec)

|4—25n5 —Il-[

h !
| Luminosity = 10* cm™ sec™

X X A

G

Detectors

Front end pipelines

Readout buffers

Switching network

Processor farms

ATLAS: 3 physical levels

Detectors

@ Front end pipelines

Readout buffers

Switching network

Processor farms

G

CMS: 2 physical levels
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ATLAS & CMS
___TnggerData

MUON System

Segment and track finding

Use prompt data (calorimetry
and muons) to identify:

High p, electron, muon, jets,
missing E.

| 1
| 1

CALORIMETERSs

Cluster finding and energy §
deposition evaluation '

New data every 25 ns
Decision latency ~ ys
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ATLAS & CMS Level 1:
_ Only Calorimeter & Muon

: ""'# IH* A
High Occupancy in high granularity tracking detectors
Pattern recognition much Compare to tracker info
faster/easier i ot i R b

Complex
Algorithms
Simple Algorithms H
mainly logical sums & comparators uge
amounts of AR NN e
Small amounts of data S e 2
data SRl e

~0O(7000) towers in parallel
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CMS Trigger Levels

2 rad f].
40 MHz Level-1. Specialized processors ] Sae AN
- Particle identification: high p, electron, ﬂ i N
muon, jets, missing E; immams

- Local pattern recugnition and energy
evaluation on prompt macro-granular -
information from calorimeter and muon
detectors

T LT

Ewant
Manager

High trigger Ievels.l—-ﬂ]ﬁ[k[j["]—ﬂ]ﬁd]

Switch

Network and CPU farms [ comesingServices |
- Clean particle signature
Up to 100 kHz - Finer granularity precise measurement

- Kinematics. effective mass cuts & event topology

- Track reconstruction and detector matching
- Event reconstruction and analysis =100 Hz
t:

wel 1 Datector Frontend ]
Trigger
L
¥

Ewvant
ldanager

Switch

[ Computing Services ] * .
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The idea behind the system:

“... cope with higher rates and adapt to new insights
from the first years of LHC physics.”

Fast, integrated & configurable electronics

Level-1:

Fast custom electronics (ASICs & FPGA)

=» synchronous

=» algorithms implemented in firmware
= max. Latency: 2,5 us
- including transmission delays

Calorimeter and Muon detectors
- reduced granularity (7000 towers + 280 sectors)

Input rate: 40 MHz

Max. L1 accept rate: <100 kHz

Trigger objects:

ATLAS Level-1 Trigger

Calorimeters

Muon Detectors

Digitize,
Calibrate,
efc.

Muon
Barrel
Trigger

ely EJeI':':I?SS Muon-CTP
L
thadron | | £ _sum Interface

-

________ v_ T e |
Central Trigger ]’_._
Processor I 3

High p; electrons/photons, tau, muons, Jets, EtSum, Etmiss and EtJet
handling high multiplicities and high-ET objects (beyond SM)

Higgs measurements — triggering on W/Z decays
Erika Garutti - The art of calorimetry
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L1 Accept to L2
detector readout
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CMS Electron/Photon Algorithm

Trigger Primitive Generator

Finegrain  FlagMaxof (§f , # , # , H)&SumET|[

Regional Calorimeter Trigger

E. cut |‘¢+ Max (I | ) > Threshold
- AND —
Longitudinal cut (H/E) Eﬂi / [ <0.05
AND
Isolation, Hadronic & EM n <2 GeV
AND
One of ( __ I , I | W "'I}-:1Gev

ELECTRON or PHOTON
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Missing E+

Missing E- clear signature of new physics

(MET) originated from many weakly interacting exotic
particles in the final state.

Example: SUSY =» undetectable LSP (lightest SUSY particle) in the final state

gluino pair-production ... in the detector

dilepton 10 10 (SS) |

T —T
2 E Sum of all BG
s S [ ATLAS o tibar+Jets
3 TR LAY
N = 5 Shdl= + Welets
S E
& < @ Z+Jets
= a 5 « QcD
& = 7 10 =
© 8 g WW,WZ,ZZ
@ C
A longitudinal 1k hl e '-U"-l_l_
) 10" = : l-LI'II__IF

102l iy

Missing Et (GeV)

MET measured in the MET distribution for events selected
calo + muon system requiring two same sign leptons
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Missing E+ reconstruction

e e e e e e e e e e el e e e e e e e e e e

* Missing ET is based on the calorimeter information and'.
defined as a 2D-vector sum of transverse energy
deposits in the calorimeter cells:

Er=— E(En sinf,, cos i+ E, sin 0, sin ¢,j) = —E,i — Eyj

* In case of muons in the event, it receives an additional
CorreCtion : de posit

muons towers

Er Y Ef pE+ Y Ep.

 MET resolution in QCD events depends on total
transverse energy deposit in the calorimeter and is often
parameterized as a function of scalar Et sum over the

calorimeter cells, or St:

o(£r) :@f ZET — D T@(EET —@

Noise Stochastic Constant Offset
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Detector hermeticity

CMS calorimeter coverage:
— Central region: [n| < 3.0

— Forward region (HF): 3.0 <|n| < 5.0
00O 0O 000 OO O O O o o O o o
O~ — O U QN n M O M~ <t — @ 9] Qo
QONOTN AN O KW T ® = O O
QO N®MIT 1 QO KN ©® e © - N O o 0
SRR R B R A - A T - - X9
I T T T T T T [ A TR T I I :
cESFESEfFSE S f8 £ € F £ £ & £ W —1 5660
2900 m—L1,2,3'4/5,6/7,'8,9 /10 /11 /12 - 13 ’%5/15/’”16//17//13//19“ '
/ ~ 7 -7 _ " n=1.6530
-~

é%=;”=======-} | = -~

1811Tm

1.290 m——p=

SEERRAN
L Y

WA\
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Missing E; at CMS

e Parameters: “FcMS Profiminary | ]
= A=1.48 GeV
= B=1.03 GeV'?

= C =0.023 (dominates at large Sr)

i J

o(E™%) (GeV)

= D=82GeV
= Apart from the resolution an : ]
important characteristic is the C ozt oootwse
non-Gaussian tails ———
= Very hard to simulate; will have ;-prrr——— 3E (Gev)
to wait for real data to see how %:’_’i 1%013%/9% — v
large the effect is i gﬁggﬁgli p—
] S
= A few special cases have been 55 T
looked at already, e.g. the " QCD Sample 1
r L
effect of hot/dead channels T » ]
i
T T T T T
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Missing E is tough
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» Fake MET appears naturally in multijet > s ;:::;:“""::“"' —
events, which have enormous rate at L_]Sekore busto sute

the LHC 3TN — o
- Jets tend to fluctuate wildly: 0L N
— Large shower fluctuation .
— Fluctuations in the e/h energy ratio
— Non-linear calorimeter response

100 200 300 400 500 600 700 800 900 1000

— Non-compensation (i.e., e/h = 1) E, [GeV]
» Instrumental effects: %"’:5 T
— Dead or “hot” calorimeter cells m.' m —Ritipdesibvptnd
— Cosmic ray bremsstrahlung R
— Poorly instrumented area of the 10’
detector

100

« Consequently, it will be a challenge to
use in early LHC running

« Nevertheless, MET is one of the most
prominent signatures for new physics
and thus must be pursued
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« Raw ME- spectrum at the Tevatron
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Summary

Calorimeter: only detector component capable of providing fast
topological event selection

- @ LHC hardware trigger decision in ~1 us reduced event rate from
40MHz to 1-0.1 MHz

- Fast topological algorithms provide list of trigger objects:
High p; electrons/photons, tau, muons, Jets

- in addition to integral quantities:
E.Sum, E;miss and E Jet

- Extended use of missing E- to select new physics
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Calorimeter for Particle Flow

Back to calorimeters for calorimetry,
I.e. to provide the best energy resolution for the detected particles

We saw that:
jet energy resolution is worse than or at most as good as hadron resolution

=>for the precision physics planned for the next machines we need more

Next = how to improve jet energy resolution to match the requirement of the
new physics expected in the next 30-50 years

= Need to “get rid of” fluctuations

Two approaches:
- minimize the influence of the calorimeter =» use combination of all

detectors
- measure the shower components in each event = access the source of

fluctuations
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The first idea: Energy flow

- - S P R A R b R R R

Idea (early 90ies):

« Combine energy measurement from the calorimeter with the momentum
measurement from the tracking

* To not double count the energy: energy deposited in the calorimeter by
the tracks has to be masked

* First algorithms developed by Aleph: clean e+/e- environment
» Algorithms also developed by H1 for inclusive measurements,
successfully adapted by CDF:

- extrapolate track to the inner surface of the calorimeter and apply a
cone or a cylindrical mask to the calorimeter cells behind the track

- maximize between the energy in the mask and the track
momentum
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Limits on
Higgs coupling

m,, (Gevic))

First observation of quark Jets

Energy flow history

UA1, UA2 @ SppS, CERN
JADE @ PETRA collider, DESY

Traditional Jet measurement:
use the calorimeter alone
- example of CDF life event

Discovery of new physics requires higher resolution

First application of Energy Flow Algorithm
ALEPH detector searching for Higgs [ 1990 }

Use tracker information to improve jet energy resolution

] Particle Flow Algorithms>
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Does the method work ?

Test on existing detectors
ALEPH, CDF, ZEUS, ...

iy
<0

-
=1}

- Significantly improved resolution

Jet Energy Resolution (%)

YES ! But that is not enough ...

20

Goal of the Linear Collider

Design a detector optimized for

Particle Flow application

Erika Garutti - The art ¢f calorimetry
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Photon + Jet Py Balancing in CDF Data

® Typical CDF Jet Resolution using
Colorimetry only

A New CDF Jet Algorithm Using Tracking
Calorimetry and Shower Max Detectors

o /P, = 83 %/VP,

a/Py = 64 % /P,

| COF Preliminary
faa Levs 104
25 30

40 45

PR PRI I L
35 50 55 50

Photon Py (GeV)




Physics motivation

ILC: / CLIC

e Need to measure 4-vectors of jets with excellent precision.

Physics program relies heavily on final states with (several) bosons: W,Z,H
Necessary to reconstruct W,Z through their hadronic decay modes .

Hadronic energy resolution very important for this multi-jet spectroscopy.

o The same argument can also be made for SLHC .
For example, study of multi-boson couplings is statistics limited
if one only would consider leptonically decaying W,Z.

—> SLHC physics program might benefit from improved hadron calorimetry

o The issue of H°—s vy will presumably be settled during LHC running .
Therefore, it is conceivable to replace the calorimeter system by one
with strongly improved hadronic performance for SLHC era .
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Physics motivation |l

* Electron-positron colliders provide clean environment for
precision physics

TheLHC| pp—H+ X ThelLC| ete™ — HZ

* At electron-positron the final state corresponds to the underlying
physics interaction, e.g. abovesee H - b0 and 7Z — M+M_
and nothing else...
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ILC physics & calorimetry

e e e R R R R - - - — R A A R R R R b R R R -

ILC PHYSICS: f'| -

Precision Studies/Measurements A

* Higgs sector o \ 1i/£qq
* SUSY particle spectrum (if there) )
*x SM particles (e.g. W-boson, top) .

* and much more... a

Physics characterised by:
* High Multiplicity final states
often 6/8 jets p

* Small cross-sections
e.g. o(e¥e—=ZHH) = 0.3 fb

#* Require High Luminosity — i.e. the ILC
¥ Detector optimized for precision measurements
in difficult multi-jet environment
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Compare with LEP

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

* ete—»>Z and ete->W+W- dominate _,:105
backgrounds not too problematic Ly
i - 10
* Kinematic fits used for mass reco. g
good jet energy resolution not vital <10 ’
RN LAY RARLN LALRE LARES LAY R R R @
) wn
2102 ,
17 ]
o 2 e
'
1
- -1 _'I:.
s w o e 10 807100120 140 160 180200
At the ILC: Vs / GeV

* Backgrounds dominate ‘interesting’ physics
* Kinematic fitting much less useful: Beamsstrahlung +
final states with > 1 neutrino

#* Physics performance depends critically on the detector
performance (not true at LEP)

#* Places stringent requirements on the ILC detector

Erika Garutti - The art of calorimetry
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Calorimetry at ILC

Jet energy resolution:

Best at LEP (ALEPH): ILC GOAL.:
og/E = 0.6(1+]|cosb,|)/VE(GeV) og/E = 0.3/VE(GeV)

* Jet energy resolution directly impacts physics sensitivity
Often-quoted Example:
If the Higgs mechanism is not responsible for

EWSB then QGC processes important
ete->vwWW-vvqqqq, ete»>vwZZ->vvqqqq

Reconstruction of two
di-jet masses allows
discrimination of WW
and ZZ final states

MjLi2

* EQUALLY applicable to any final states where want to separate
W-qq and Z-qq !
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Calorimetry goal

* Aim for jet energy resolution giving di-jet mass resolution 5
similar to Gauge boson widths

* For a pair of jets have:
m? = m% +m% +2E1E> (1 — 1 f2cos6)2)
* For di-jet mass resolution of order FW/Z

O 2.5 2.1
~ ~ ~ 0.027
m 01.2 80.3 0.0

|:> OF; /Ej < 3.8% + term due to 6,, uncertainty

* Assuming a single jet energy resolution of normal form

or/E = a(E)/\/E(GeV)
~ a(E;)//E;;(GeV) Ej/GeV | o(Ey)
= On/m~ E))/VE); 100 | <27 %
|:> (X(Ej) < 0027\/E”(G6V) 200 <38 Y%

* Typical di-jet energies at ILC (100-300 GeV)
suggests jet energy resolution goal of 0g/E < 0.30/ \/Ejj(GeV)
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*Want | og/E ~ 30%/VE(GeV)

or probably more correctly | Gg/E ~ 3.8 %

*Very hard (may not be possible) to achieve this with a
traditional approach to calorimetry

Limited by typical HCAL resolution of > 50%/VE(GeV)

|:> a new approach to calorimetry

Erika Garutti - The art of calorimetry
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Particle Flow paradigm

reconstruct every particle in the event
How? {7 a0 AT apcaL
S - ~'ECAL
Over energy range up to ~100 GeV _ o tracker
¢ Y ui T etc. K, ete.

Tracker is superior to calorimeter >

Use tracker to reconstruct charge objects,
e*,ut,h* (<65%> of E jet )

AE/p (GeV)

Use for v reconstruction (<25%>)

(ECAL+) HCAL for h° reconstruction
(<10%>)

_ 0 F - 3
=» The “sum” gives the Jet energy P Spurdetektore
10 -2- TR | MR MR T | L1

* HCAL E resolution dominates jet 10" 1 10 10°
resolution Energie/Impuls (GeV)
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Particle flow paradigm Il

* |In a typical jet :
¢+ 60 % of jet energy in charged hadrons
¢+ 30 % in photons (mainly from n0 — YY ) é
* 10 % in neutral hadrons (mainly n and K; )
* Traditional calorimetric approach:
¢+ Measure all components of jet energy in ECAL/HCAL !

+ ~70 % of energy measured in HCAL: og/E =~ 60 %/+/E(GeV)
¢+ Intrinsically “poor” HCAL resolution limits jet energy resolution

, ”YH-_.“* .fq%%:btﬂ_‘n e | _ﬂe;.
HE. — e

Ejer= EgcaL ¥ Encar E,er= Errack *E, + E,

* Particle Flow Calorimetry paradigm:

+ charged particles measured in tracker (essentially perfectly)

+ Photons in ECAL: og/E < 20%/+1/E(GeV)
¢+ Neutral hadrons (ONLY) in HCAL

+ Only 10 % of jet energy from HCAL => much improved resolution
Erika Garutti - The art of calorimetry 39
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Particle flow calorimetry

S e e e e e e e e e e e e e e e

Hardware:
*Need to be able to resolve energy deposits from different particles
== Highly granular detectors (as studied in CALICE)

L

Software:

* Need to be able to identify energy deposits from each individual particle !
== Sophisticated reconstruction software

. s
=F o =8
i R

* Particle Flow Calorimetry = HARDWARE + SOFTWARE

Erika Garutti - The art of calorimetry 40



Particle flow reconstruction (PFA)

Reconstruction of a Particle Flow Calorimeter:
* Avoid double counting of energy from same particle
* Separate energy deposits from different particles

e.g.
. - —— If these hits are clustered together with
e T these, lose energy deposit from this neutral
v W hadron (now part of track particle) and ruin
o -\ -t energy measurement for this jet.
— Rt B
™

Level of mistakes, “confusion”, determines jet energy resolution
not the intrinsic calorimetric performance of ECAL/HCAL

sounds easy....

* PFA performance depends on detailed reconstruction
* Relatively new, still developing ideas (not just software)
* Studies need to be based on a sophisticated detector simulations
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Reconstruction overview

PFA: several steps + iterative process

I. Preparation

Ii. Loose clustering in ECAL and HCAL

1. Topological linking of clearly associated clusters

Iv. Courser grouping of clusters

v. lterative reclustering

vi. Photon ldentification/Recovery

vii. Fragment removal

viii. Formation of final Particle Flow Objects
(reconstructed particles)

Includes analysis of all detector components... we discuss only some
aspects relevant to calorimeters
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ECAL/HCAL clustering

* Start at inner layers and work outward

* Tracks can be used to “seed” clusters

* Associate hits with existing Clusters

* If no association made form new Cluster
* Simple cone based algorithm

01 23 45 6

,) i
- Cones based on either:

’ ~ initial PC direction or

current PC direction

Simple cone algorithm
based on current direction
+ additional N pixels

'Y
v

Parameters:

= cone angle
Initial cluster Unmatched hits seeds = additional pixels
direction new cluster
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Topological cluster association

+By design, clustering errs on side of caution

I.e. clusters tend to be split
+Philosophy: easier to put things together than split them up
+Clusters are then associated together in two stages:

e 1) Tight cluster association — clear topologies

e 2) Loose cluster association — fix what’s been missed

‘jﬁ( Photon ID

* Photon ID plays important role

* Simple “cut-based” photon ID applied to all clusters

* Clusters tagged as photons are immune from association
procedure — just left alone

Won’'t merge Won't merge Could get merged

¥ U
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Cluster topological association |l

* Clusters associated using a number of topological rules

Clear Associations:
 Join clusters which are clearly associated making use of high

granularity + tracking capability: very few mistakes

Less clear associations:

* 7 GeV cluster

/

e.g. | Proximity

Use E/p consistency
to veto clear mistakes

6 GeV cluster

4 GeV track
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Iterative re-clustering

* Upto this point, in most cases performance is good —
but some difficult cases...

xz view | 1 =

0

100

200

300

400

500

600

700

800

|IIII|IIII|IIII|IIII|IIII{1III|IIII|IIII|IIII|II

900

1 | v v 0 0 Lo Lo L L
14007 I1 600 3800 2000 2200 2400 2600

* At some point hit the limit of “pure” particle flow
¢+ just can’t resolve neutral hadron in hadronic shower

e.g. if have 30 GeV track
pointing to 20 GeV cluster
SOMETHING IS WRONG

The ONLY(?) way to address -
this is “statistically”
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Iterative re-clustering |

* If track momentum and cluster energy inconsistent : RECLUSTER
e.q.

18 GeV
30 GeV 8.8.; & 19 GeV

10 GeV Track

'//I////I/f///////fI////I/fI////I/////////fI////I//I////I/.f////////I///fl//l////l/f//////(f

Change clustering parameters until cluster splits
and get sensible track-cluster match

NOTE: NOT FULL PFA as clustering driven by track momentum

This is very important for higher energy jets
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The outcome of PFA

{

I

IR

L R

L T T FI—————— P

T~ 100 GeV jet

48
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PFlow at work

Simulated event

ete” — tt

color-encoding
according to
track-cluster
association
based on PFA

Stochastic term of
30% could be reached
for the jet energy
resolution
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Performance

Figures of Merit:

FMsSgy, G7s
*Find smallest region containing * Fit sum of two Gaussians with same
90 % of events mean. The narrower one is
* Determine rms in this region constrained to contain 75% of events
* Quote o of narrow Gaussian
H EJM_
= Vs =91 GeV 3 S r ﬂ) Z— uds
0 = Z sl b cosol<o.8
250; E
- 200
ZDD:— 5
150;— lﬁﬂj—
1l]f— E
C 100~
50 I7J -
% 75 I I!!IIII I I!!EI - IEll]I = I15| = I‘lllll] 1!|15 I11Il 5“;_
. T

Ll III Il I|I L1
507300 320 340 360 380 400 420 440
Reconstucted Energy/GeV

It is found that rmsy, & G55

Erika Garutti - The art of calorimetry 50



Performance / detector study

Performance (LDCO00)

rms90 PandoraPFA v02-01
B | Tepsol<o " | o</
45 GeV 0.235 3.5 %
100 GeV 0.306 3.1 %
180 GeV 0.427 3.2 %
250 GeV 0.565 3.6 %

In simulation

NOTE: studies based on ILD
detector concept are
“work-in-progress”

*Tesla TDR detector model
*Full simulation
*Full reconstruction

* Particle flow can achieve ILC goal of o¢/E; < 3.8 %
* For lower energy jets Particle Flow gives unprecedented

levels of performance, e.g. @ 45 GeV : 3.5% c.f. ~10% (ALEPH)
* “Calorimetric” performance (o) degrades for higher energy jets
* + current code is not perfect - can do better

PARTICLE FLOW CALORIMETRY WORKS!
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Effect of granularity on PFlow

Z > uds (|cos0|<0.7) R “Preliminary Conclusions”
® 180 GeV Jets + 3x3 cm? cell size
@ 100 GeV Jets + No advantage = 1x1 cm?2
* physics ?
o - algorithm artefact ?
..... Aot + 5x5 sz degrades PFA

* Does not exclude coarser
granularity deep in HCAL

0.6

=
=
f:
=
—
=
W
]
=
-
2 05
T
="
=
=
prey
W
H

HCAL Cell Size/cm
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Particle Flow @ LHC

e R R A A R R R R R R A SR SR R R R R A R R SR R R R R R R SR R R A R R R R R b oA R R e

CMS

s

I—|IIII|IIII|IIII|IIII|IIII|III

200 -150 -100 -50 O
X [em]

1) Leverage High Precision Tracking

2) And High Resolution ECAL EM-Showers

3) Match and Discard Charged Hadron
Showers Replacing with Track Momentum

(Courtesy of P. Janot)

Match track to hlgh
granularity ECAL

T 208) -
|=| L
o 24 KoL
o ~E4
250
2,551 ‘ﬁ A
26 F
-2.652— E3 Fiifgg
27F = E2
0.65 0.7 0.75 08 085 0.9 095 1 108
—. _ Match to lower T
®23 Granularity HCAL
= 24r KoL
2.45
2.5[
285 i . H1
265 ﬂ{].
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PFlow improvements at CMS |

[ CMS Preliminary | | GMS Preliminary |

s R Jet Improvements ¢ 12— Response Linearity
5 MEN & Coneced CaoJet §_ S ENUR SUOY SN N NS S—
% 05% e Perie ot ¥ %&-‘4“:: _- \\\\\ n B NN ,— o __‘i'
% OZE 8 “. " Also, improves Jet Angle
S gaf X ¢~  and Reco Turn-on Eff.
po - ﬂ\s\ B ? ? —i— Default Correctl
E 0.155 = L"‘"-—-q,._;‘-"&k 0_4: | | | B ault Correction
0 o s
o a S I I D D
10? 100 200 300 400 500 600
p [GeV/c] P, [GeVic]

| GWS Preliminary |

MET Improvements  [cusereimmay]

E 45 W O
04
= 40 - E
g 025
L 35 ny E
%x' . :j -0.3; ! ! E
D4 i i i
2 i # " Response Linearity
20 g i |
s 06E gg’a— e :
r F O
10, f -O.TEE:E & Particle Flow [
s 08F O Calorimeter
_ulg; ..................
% 500 1000 1500 2000 b s 1000 1500 2000

TrueX E; [GeV] TrueX E [GeV]
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Conclusions on PFlow

Particle flow is a concept to improve the jet energy resolution of a HEP detector
It is based on:

proper detector design (high granular calorimeter!!!)

+ sophisticated reconstruction software

PFlow techniques have been shown to improve jet E resolution in existing
detectors, but the full benefit can only be seen on the future generation of PFlow
designed detectors

Issues:
- At which energy does Pflow break down?
- Is there anything better?

AE/p (GeV)
o

[

Spurdetektored

L L a gl L I ET] 1 AR E T | M MY
10 1 10 10°
Energie/Impuls (GeV)
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Dual readout calorimetry

Alternative approach to the problem of improving hadronic / jet energy
resolution:

- measure the shower components in each event = access the source
of fluctuations:

- measuring f,,, in each event removes the EM fluctuations

- ideally one wants to measure also f, which is proportional to the
binding energy to remove fluctuations in the invisible energy

- Example: The DREAM calorimeter as a test of this approach
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Measure the EM shower content

Measure f_ , event-by-event

Pioneered by WA1 around 1980 =

- Used characteristics of energy deposit
profile to disentangle em/non-em shower

components

Total measured energy (nep)

Works better as energy increases

Does not work for jets (collection of y and &

showering simultaneously in the same

area)

Number of events

Erika Garutti - The art of calorimetry

1000

800+

600+

200 .
Before After
correction correction
0 I 1 I 1 I 1 1 1 ! ! ! 1 L 1
0 200 400 600 800 0 200 400 600 800
Maximum energy in a single calorimeter cell (nep)
unweighted o
- weighted
080k
L 73 GeVm 140GeV R || =
2 p.eol *2 PR
1000 |- - z | 2
1 b5}
S 040l
| Vo
I L 020 fg unweighted
Ill _1L, L [» weighted
0 r y . . — MR R I
100 500 1000 0 50 100 150
E (nep) E (GeV)
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The Dual REAdout Method principl
Use Cerenkov light !!! '
Quartz fibers are only sensitive to em shower component !

* Production of Cerenkov light = Signal dominated by em component

« ~80% of non-em energy deposited by non-relativistic particles
= e/h=5 (CMS-HF)

= lateral profile of hadronic showers

« Hadronic component mainly spallation protons E, ~ few hundred MeV
= non-relativistic = no Cerenkov light

« Electron and positrons emit Cerenkov light up to a portion of MeV

Use dual-readout system:
- Regular readout (scintillator, LAr, ...) measures visible energy
- Quartz fibers measure em shower component E_

=» Combining both results makes it possible to determine f_, and the
energy E of the showering hadron

=» Eliminates dominant source of fluctuations
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Quartz fiber calorimetry

RADIAL SHOWER PROFILES IN dE/dx AND C

—

9

o

k-

> — QCAL

R TR M A S [T SPACAL

L

X"

ﬁ

=

=

=

chn

n;: -------

a | i 3 Sy

- T . T T

B o e N e e e N

" TN oA ot ARRIBNEL I, A R ISR TR SO, AR

— : by R

LL i i A | 3 I .""-_.__
0 50 100 150 200 250 300

Distance from shower axis (mm)

Radial shower profile in SPACAL (scintillatior fibers) and QCAL (quariz fiber)
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The DREAM prototype
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Basic structure: Copper
4%4 mm? Cu rods oc‘
2.5 mm radius hole . .
7 hibers .
3 scintillating

4 Cerenkov = zfm":nm_'

DREAM prototype:

5580 rods, 35910 fibers, 2 m [ung (10 Aiy)
16.2 cm effective radius (0.81 Ain, 8.0 pm)
1030 Kg

Xp =20.10 mm, pm =20.35 mm

19 towers, 270 rods each

hexagonal shape, 80 mm apex to apex

Tower radius 37.10 mm (1.82 pm)

Each tower read-out l}}f 2 PMs (:1 for Q and 1
for S fibers)

I central tower + two ring&
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The DREAM prototype
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DREAM prototype:

tested at the CERN H4 beam line

Data samples:

1T from 20 to 300 GeV

“"Jets” from 50 to 330 GeV

“Jets” mimicked by TT interaction on 10 cm
polyethylene target in front of the detector
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Making “jets” at test beams

IT
HOD
e | ‘ DREAM
TC
PSD
5 i g - i & = . H
10 | high-multupheity jets
i L
B0l W
£ O
5 E1 %
5"‘ : | "—‘—,._Lr downstream of target
: { 'y

E l[l i- i rh‘ﬁr‘“T'-"HF'"-_:I"'.".'.'-.-‘.'“-_-,_..I__H
. - . s
:-‘}J ¥ i, L s frﬁ?’r"'i-"-'"r.“[,-ﬂ'}:
64

10 | 1 O L

------------ b + - - & - - - r E - . ' - * - 9 = - 4
{0 5 [ 15 20 25 30
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Calibration with 40 GeV electrons

0000F —
L Scintillator
8000 -  Mean 40.66
[ Sigma 2.02
s000. Kndf 80735
« Tilt 2° respect to the beam 5_
direction to avoid channelling = R
effects (O 20001
- |
d_J, “""’“""““"" (T T O T T T S TN O Y T
« Modest energy resolution for ﬁ- F oo
) : . N Lrenkoy |
electrons (scintillator signal): = 60005 |Mean  40.52
(D) £ | Sigma 2.66
- E | %3mdf 211/49]
o/E = 20.5%/NE + 1.5% B 000
:lllﬂ;
nE .........................

0 10 20 30 40 50 60 70 80

Calorimeter signal (GeV)
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100 GeV single pions (raw signal)

Signal distribution:

« Asymmetric, broad, smaller

signal than for e-

* Typical tails feature of a

non-compensating
calorimeter

R R e R R R R R R R R R SR R A e R R R A R A R A R e SR SR b SR R SR SR R e ZRe SR aRe— SR R oA R R e e R R b R R R o

600

500

a) ﬁ ' Sc_imi]lﬂmr '
' Entries 25121
(Mean 81.66
JH RMS 1003

y

Events per 0.5 em GeV

500
b) ]{1 - Cerenkoy
{00 - Jﬂ Enuies 25121
: L ' Mean .04
I B
5 o . EMS 11.779
300 }.' \
200 ' ]1 :
r c
00| N\*‘M
ﬂ: PRy R A T .|..I. A w1 s s 1 & |
0 20 40 60 80 100 120 140

Signal (em GeV)
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Hadronic response non-linearity

I T R S P pa T
4=
aQ
O
— 09} |
(e | 'y o A -~
g Fay
.20 A
: 0 8 L l ()C{' a A 5 O |
2 a
(a4 ki L
*é 0.7¢ B o jets (uncorrected) |
'S a T (uncorrected)
7 —— calibration (e7)

0.6 1 - 1 : - :

0 50 100 150 200 250 300
Energy (GeV)

Hadron response is < 1 and ~20% non-linear
Similar non-linearity for jets
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How to determine f_, and E

)= fvm)

: i 1
140} " - _J e
- | Leakage /S =1 S=E f em (e /h)s(
1201 | corrected i 1 i
; Q =F .fem e (1 . fem)
100} - (e/ h,)Q -

" -
o0
=]
Tt [ 1771

eg.If ¢e/h=13(S),47(Q)

B
=
B

Cerenkov signal
S

//f . .:-::":'— | Q . fLIT]_l_ 0 21 (1 fLI'ﬂ)
ZU_— /*’/// S fLII'I =t 0.77 ( iun)
géf/}/" i bkl vl eas Ll
0 20 40 60 80 100 120 140 . S R XQ
Scintillator signal L = 97—
Q/S<1.-) ~25% of jche scintillator signal . 1 — (h/e)s
from pion showers is caused by non- with X = =~ ~03

relativistic particles, typically protons from 1 = (h/e)q

spallation or elastic neutron scattering
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Relation between Q/S ratio and f_,

------------------ it it e aaaer il
em shower fraction  f__ '
{);2 | 0.4 | 0;6 | 0;8 : 1
: 7S f., strongly correlated to Q/S
500:_ a) Emricx- 25121 . .
= = ~60% of a 100 GeV pion shower is
-D £in . .
5 400 aMs  oosi2 carried by em components
g 400p
g2
D 300(- => use f,, extracted from the Q/S
L .
o | method to correct non-compensation
8 effects in the scintillator response
E |
Z, 1001 HR\
[l et v b b gy Meen i Liagy
820506 07 08 09 1T e

/S signal ratio

Q  femt021(1—fom)
S~ Femt DTN —fa)

N 1/(e/h) for quartz and scintillator
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Non-compensation correction

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

Calorimeter response: R = S/E,

Scintillator signals

200
1 I

R(fEm) - fETn + = [1 - fearn]:

ofh
e/h = 1.3 from fit to scintillator =»

(§)=149.8 +38.5 fem %
180 j

160

( in the same way one gets

e/h = 4.7 for quartz) 4 200 GeV “jets”

1 | 1 | 1 | 1 | | 1 | | | 1 | | | | | 1
0 0.2 0.4 0.6 0.8 1

Electromagnetic shower fraction, fep,

Average scintillator signal

R(fem) = Po 1T P fem

i
e [ + p1/po ] with———— (el =1
1L+ fem - p1/po Do
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Reconstructed hadron energy

Scintillator signal before correction = asymmetry due to nhon-compensation

Events per em GeV

- [ Ssignal 200 GeV

T |Entries 1 7 RPNl " e L3
200- i 1359 e g e e e B B o

— |RMS 12.6 ] K

g = = ;
100" 2,

3 w 0.9 a

E =

- (a) E

0= ' - w 0.8 o

300 £ : 7 3

- ) o r5 (raw dat:

E | Q0 it 8 . s Tt (afler OS)

~ | Entries 13507 o 0.7 Pions (raw data)| 7]
2[}[}:_ mdf 323153 - | « Pions (after Q/S)| |

| Mean 18835+0.1 Calibration ()

— | Sigma 9.5440.07 0.6 : ! : : .

= 0 50 100 150 200 250 300
100E

- Energy (GeV)

0; (b)

0 50 100 150 200 250

Scintillator signal (em GeV) Recovered linearity of response to

After Q/S method correction pions and “jets

=» good Gaussian signal
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Energy resolution

Energy (GeV) Energy (GeV)
30 50 100 300 1000
3[]“ 2:0 T T | B .].(I}"::.I ™TTT Df] 25_ T T I T T 1717 T L LR e

[ *%, . %cinti]]atnr - - = pintilutor

i o Quartz ] - ™ 1
~ F —a (Q/S corrected| - i R —o— Q/S corrected] |
S | *, - OF  um, 0 1
= Faom, . ] s [ "
g 20f TE+7% ", 8% 109 ] € | %
= I "" E ] g 15} .
= = |
S 5 |
A - . Q i
] o |
=] " —
Sy L & Of
v 0 ‘ 5 | .
= [ 68 ! |
B i Bl |

[(a) single pions : - jets

| | 1 1 0 P T TR N AN TN TR SN T A SN ST S S SN SR TN M
D 0.20 0.15 0.10 005 O 0.20 0.15 0.10 0.05 0

— 1/\E
Significant improvement in energy resolution especially for jets
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Alternative calibration method |

em shower fraction TR

400(@)

gl

z = | Scintillator

= soof | Entries 25121

3005 - |Mean 81.66

2 £ 400 RMS 1003
B F :
PL200E- 3001
& E r
= — r
e F 2001
5 1005 c

2.

13
=
I

§ After (Q+S)/E correction
- _| Entries 25121

8

|
x
3

5 o
T I‘I-‘I |
s
i
Events per 0.5 GeV
=

= | %2 /naf 118/51
= | Mean 101.7+£0.02

Average scintillator signal
(==
L=
I

- 1200E-| Sigma  2.645+ 0.013
60— N =
g =157 +453 %3 apply 800}
40;‘ & X2/ndof = 148.5/132 . 3
g « correction E J \
(] S| i ' R | Ly a o g E(h)
{}‘. PR L | " | L 1 | | L
¢ 43 : (Q-:.SS):‘E % “ y 0 20 40 60 80 100 120 140

Scintillator signal (GeV)

Determine f_, from the relation:
(Q+S) _ gj :(gj 1 0.453Q*S)
= =091+1.09 f_ (E - =lg) o =

where E is the beam energy Erika Garutti - The art of calorimetry 71



Obtained resolution with (Q+S)/E method

Energy (GeV) Significant improvements w.r.t. Q/S
30— 0900 10 % method for both “jets” (64%->19%)

| and pions (41%—->20%)
—=- plOns
» "jets” |

I
N

=»so where is the “trick”?

=

Energy resolution (%) squared
S O

E

o0
L=y

005 004 003 002 001 0
—1/E
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Obtained resolution with (Q+S)/E method

Energy (GeV) Significant improvements w.r.t. Q/S
30— 0900 10 % method for both “jets” (64%->19%)

and pions (41%—>19%)

- pic-ns
« "jets”

[t
N

=»so where is the “trick”?

=

(Q;S) ~0.91+1.09F,_

=

where E is the beam energy

= makes use of the beam energy
not known in real experiment
0! - - - - - ' always careful at what assumptions
006 005 004 003 002 0.01 0 ; }
—1/E you make during analysis!!!
In the DREAM case this investigation was motivated by the large lateral leakage
in the DREAM module. The (Q+S)/E only indicates where the limit would be on E

resolution. Message: there is still room for improvements w.r.t. the Q/S method

results at present if one uses a larger detector
Erika Garutti - The art of calorimetry 73

E

Energy resolution (%) squared




e Cerenkov light is emitted by relativistic charged particles (3 > 1/n)
e.g. quartz (n = 1.45): Threshold 0.2 MeV for e, 400 MeV for p

Light is emitted at angle 6 = arccos ( Bn)'] (~ 45° for B ~ 1 in quartz)

e Optical fibers only trap light emitted within the numerical aperture

Ocrit ~ 20° for quartz fibers

9uL‘ril

e Comparison of Cerenkov light (directional) and scintillation light
(isotropic) produced in fiber calorimeters is a rich source

of information on details of shower development
e,p,m,..
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DREAM conclusions

DREAM offers a powerful technique to improve hadronic calorimeter
performance:

Correct hadronic energy reconstruction, in an instrument calibrated
with electrons !

Linearity for hadrons and jets
Gaussian response functions
Energy resolution scales with sqrt(E)

o/E < 5% for high-energy “jets”, in a detector with a mass of only 1 ton
I (dominated by fluctuations in shower leakage)
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How to improve on DREAM?

« Build a larger detector =»reduce effects side leakage
* Increase Cerenkov light yield
 DREAM: 8 p.e./GeV => fluctuations contribute 35%/+VE

* No reason why DREAM principle is limited to fiber calorimeters
« Homogeneous detector ?!
= Need to separate the light into its C, S components
« Sampling structure with alternating tiles of C, S materials

Good solution for an ILC/CLIC calorimeter:

« Homogeneous em calorimeter + DREAM
« Highly granular PFlow calorimeter with quartz and scintillator tiles
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Cerenkov light in PbWo4 crystals

» Light yield typically 10 p.e./MeV (dependent on T, readout)
« Lead glass 0.5 - 1 p.e./MeV from Cerenkov effect (3 - 5%/+E)
= Expect substantial C component in PbWO4 signals

 How to detect/isolate Cerenkov component ?
 Directionality of Cerenkov component
e Time structure of signals
« Spectral differences
« Test doped Pb-glass with red / green scintillator
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Dual Readout with homogeneous material

Separation of Scintillation & Cherenkov light can be based on:

. Time structure of the signal Cherenkov Scintillation

3 SpeCtra| difference Time response Prompt Exponential decay

« Directionality of Cherenkov Light Spectrum o< 1/A2 Peak
component Directionality Cone: cos 8.=1/pn Isotropic

Tests performed at the SPS (CERN) by the DREAM collaboration with 2 kinds of
CryStaIS: PbWO 4 BGO Crystal LightYield | Decay Peak Cutoff Refr. | Density

iNaI[TIl 'I_'i_r_ne (ns) | wavel.(nm) [ wavel.(nm) | Index [lgigmﬂ}
BGO ( 20 @0{} €480 32 2.15 7.13

PWO 133 \.}U £420 35 2.30 8.28
Disadvantages: Much brighter > C/S factor 100 smaller

Advantages: Scintillation spectrum peak at 480 nm - use filters Yellow for S, UV for C
Scint Decay time 300 ns (very different from prompt Cherenkov signal)

New crystals PbWO4 doped with different concentrations of
- Praesodymium (peak 630 nm, t~us)
- Molybdenum (500 nm, t~30 ns) =»seems to me more promising

"
Ry
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Pulse Ampl. (mV)

Cherenkov light measurements
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Detecting UV light
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ex={.§5§;nm 11K ]
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Behond DREAM

For ultimate hadron calorimetry (15%/+E)

=>» Measure E,,, (neutrons)

correlated to nuclear binding energy loss (invisible energy)
can be measured with third type of active material TREAM

Erika Garutti - The art of calorimetry
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Measure Neutron Fraction

The neutron fraction is correlated to nuclear binding energy
(invisible energy) =» next large source of fluctuations to attack

Neutron signal (f.)= integral of scint f., anticorrelated with C as aspected

: 2000 ;
signal over 20-40 ns Corenoan
erenkov
Ains 19 C
P . ) 3 3000
200 GeV “jets » Cerenkov f E 5 STF
~ v Scintillator t=20n= i—0 f 2
TS, fn = 10 2 2000
i T e £ 2000
T oe L] !‘ b 1 0 :_
= €0 0 Y t=0 i=1 3 -
2 YT S 1000F-
— ¥ i . 4 -
Y . C 200 GeV “jets”
5 L v -
= g N T 1] PP RPN EPRPRIN B PRI B PR R
g \ % ke . b 0 002 004 006 008 010 012
< 100 L Y | T N TR . ) Tail absent Neutron fraction. 1
2 : \'v Jor electron =050
. %, showers
v . . b 3 £ 2500
k! :
A ) x“.’ . 2000
40 : v,“
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Time (ns)

The total C distribution can be decomposed
into its constituent parts as a function of f, 0
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Total Cerenkov signal | arbitrary units)
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Level 1 Trigger Operation

~90m

Trigger
Primitive Generator

Pipeline delay ( = 3 us)

Local level-1 O_:ﬂ Global | ASIC/FPGA
Primitive e, g, jets, y Trigger | (not PC)

|
_—=——
- 40 MHz Clock
- Level-1 Accept
- Controls
|
| Front-End Digitizer ~90m
1
Accept/Reject LV-1
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L1 Trigger Locations

Underground Counting Room

e Central rows of racks for
trigger

« Connections via high-speed
copper links to adjacent
rows of ECAL & HCAL
readout racks with trigger
primitive circuitry

« Connections via optical
fiber to muon trigger
primitive generators
on the detector

*Optical fibers
connected via
“tunnels” to detector
(~90m fiber lengths)

S
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Rows of Racks containing
trigger & readout
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Trigger & DAQ at LHC

R R e R R R R R R R R R R R R e R R R A R A R A R e SR R oA ..a-'__g__ — - -
e

ATLAS ALICE

- -

Rol sddresses.

vy (= o
Level-2 Trigger

e HERE | ]
[—“,, Full Event ol
Levels 3 Levels 4 . l 1
LV-1 rate 100 kHz LV-1rate 500 Hz " S - —
Readout GB/s Readout 5 GB/s ' T_
Storage 100 MB/s Storage 1250 MB/s EEE
CMS LHCDb
Level 1 Detector Frontends 40 MHz
Trigger Raadout
P 10° Hz
Mgm“ —Ihq] Builder Network —{ :;E:
Fiex 1 Ths
Sysiems
[ Computing Services 107 Hz
Levels 2 Levels 3
LV-1rate 100 kHz LV-1rate 1 MHz
Readout 100 GB/s Readout 4 GB/s
Storage 100 MB/s Storage 40 MB/s
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Trigger

40 MHz

R e el

R R s e SR e aRe R R A R R e R R

40 MHz

MuTrCh

Hadron Electromagnatic
. E,

specialized h/iw __ N
ASICs LV d . ‘3" —L
FPGA - : 7
L1 LvI1 acq
75 kHz o
o Rol data = 1-2%
‘ Rol
~10 ms
Rol Builder LVL2 requests
L2 Supervisor - H ROIB L2sv ROS
L2 N/work
L2 Proc Unit
~2 kHz L LvI2 ac¢ = ~2 kHz 3
DFM |—>
T | Event Filter 2 > A
< EB
Event Filter l
Processors ‘>
EFacc £ ~0.2 -k-Hg—(
| Q{O

~ 200 Hz
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ATLAS Trigger & DAQ Architecture
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Other detectors

DAQ

FE Pipelines

Read-Out Drivers

120 GB/s
Read-Out Links

Read-Out Buffers

Read-Out Sub-systems

~2+4 GB/s

Dataflow Manager
Event Building N/work

Sub-Farm Input
Event Builder

Event Filter N/work

Sub-Farm Output

~ 300 MB/s
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ATLAS LVL1 Trigger

E;values (02x0.2) E,values (0.1x0.1)  Pr M informationfies o

upto2pu candidates/sector
EM & HAD EM & HAD (208 sectors in total)
~7\®<)O calorimeter trigger towers O(1M) R%C/‘IC'\?C channels

Calorimeter trigger | / \ Muon

(analogue - E;) Trigger rigger

; / ‘ \

Jet / Energyi Cluster Processor Muon-CTP Interface

sum Processor (ely, t/h) (MUCTPI)

/ Multiplicities of

S Central Trigger
Multiplicities of e/y, t/h, Processor for 6 p; thresholds
jet for 8 p; thresholds (CTP)
.each;. flags for XE, ZE- Timing, Trigger, LVL1 Accept, clock,
J, E;™ss over thresholds; Control (TTC) trigger-type to Front End
multiplicity of fwd jets systems, RODs, etc
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